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A linear stability analysis is used to investigate the stability of rotational Couette 
flow of sbratified fluids. The linearized time-dependent perturbation equatioiis 
are solved using explicit finite-difference approximations. Small random axisym- 
metric perturbations of a given wavelength are initially distributed in the flow 
field, and their development in time is obtained by numerical integration. It is 
found that the kinetic energy of the perturbations oscillates in time owing to the 
periodic transformation of the disturbance flow field from a one-vortex system 
to a two-vortex system and vice versa. The neutral condition is defined as the 
state in which the maxima of the perturbation kinetic energy curve no longer 
change in time. A neutral-stability curve is obtained using the experimentally 
observed critical wavelengths. It is in general agreement with the experimental 
data, and it confirms the experimental result that stable density stratification 
enhances stability. 

1. Introduction 
The results of an experimental investigation of the stability of rotational 

Couette flow of stably stratified fluids have been presented by Withjack & Chen 
(1974, hereafter referred to as I). They reported that the onset of instability is 
inhibited by a stable density gradient, and by using shadowgraph and dye- 
trace methods observed a rather complex vortex pattern at  the critical conditions. 
For cylinders rotating in the same direction, instabilities appeared in the critical 
state as a spiral wave form, which itself was not very stable. With counter- 
rotating cylinders, the instabilities appeared as regularly spaced vortices which, 
for the most part, were neither symmetrical Taylor vortices nor simple spirals. 
In  this paper, we present the results of a stability analysis of Couette flow with a 
stabilizing density gradient. 

The stability of homogeneous fluids in rotational Couette flow has been the 
subject of extensive theoretical investigation. Most widely treated have been 
cases with either a small gap or speed ratios p (the ratio of the angular speed fi2 
of the outer cylinder to that of the inner cylinder fi,) which are close to zero. 
When the gap is large and the speed ratio p < - 0-5, mathematical solutions of 
the eigenvalue problem become more difficult to obtain. The narrow-gap problem 
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was solved by Harris & Reid (1964) using a direct numerical method. The same 
method was used by Sparrow, Munro & Jonsson (1964) to treat problems over a 
wide range of radius ratios 7 ( = R,/R,, where R, and R, are radii of the inner and 
outer cylinders respectively). Walowit, Tsao & DiPrima (1964) treated the wide- 
gap problem using the Galerkin method. When the gap is large and at the same 
time p < -0.5, the Galerkin method becomes tedious algebraically because a 
large number of terms need to be used. With the direct numerical method, the 
set of simultaneous linear algebraic equations which must be solved to obtain 
the critical conditions becomes linearly dependent and no solution can be found. 

In  this paper, we discard a t  the outset the assumption that the time dependence 
of perturbation quantities is of exponential form. Small random disturbances 
which are periodic in the axial direction are distributed initially throughout the 
fluid. Their development in time is obtained by numerical integration. The flow 
is classified as stable or unstable on the basis of the decay or growth of the kinetic 
energy of the perturbations. The neutral state is defined by the condition that the 
perturbation kinetic energy neither grows nor decays in the mean. 

With this method, the initial perturbation could vary in the azimuthal direc- 
tion. However, in the present analysis, axisymmetric disturbances are assumed. 
The observations in I indicated that, for most of the time, the vortex pattern was 
not axisymmetric. It is difficult to discern, however, whether the asymmetry 
was the result of nonlinear interaction of finite amplitude disturbances which 
had evolved from initially symmetric perturbations, or was the result of the 
growth of the initially non-axisymmetric linear perturbations to finite amplitude. 
The results obtained for homogeneous fluids by Krueger, Gross & DiPrima 
(1966) indicated that for p N - I non-axisymmetric disturbances may cause a 
10 yo decrease in both the critical Reynolds number and wavenumber. Snyder 
(1968) found, however, that at  7 = 0.5 the difference in the critical Reynolds 
number caused by non-axisymmetric disturbances is only slightly larger than 
the experimental scatter. In  view of these facts, axisymmetric perturbations 
should yield reasonable results. 

The mathematical formulation of the stability problem is described in $2;  
difference equations are also presented, and the computation procedure discussed. 
The results are presented in 3 3. The stabilizing influence of an increase in density 
gradient is confirmed. Preferred theoretical wavelengths are not in complete 
agreement with experimental results; however, the critical conditions predicted 
are reasonable. From streamline plots, we find that the assumption of axisym- 
metric disturbances results in less complicated cell patterns than are observed. 

2. Stability analysis 
2.1. Governing equations 

A cylindrical co-ordinate system (r‘, 8, 2’) is chosen such that the z’ axis is along 
the axis of the two concentric cylinders of radii R, and R, (R, < R,). The perturba- 
tion velocity components in the r’, 6 and z’ directions are u’, v‘ and w’, with pressure 
and salinity denoted by p’ and S‘. The system of equations describing the flow 
consists of the equations of motion with the Boussinesq approximation, the salt 
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diffusion equation and the continuity equation. The equation of state for the 
stratified salt solution is taken as 

where /3 is the coefficient of volume expansion. By assuming axisymmetric per- 
turbations periodic in z' with wavelength 2771~ in the velocity components, 
pressure and salinity, the linearized disturbance equations become, after elimi- 
nating to' and p' ,  

where D' = a/&' and D& = D' +I/r ' .  In  the above equations v is the kine- 
matic viscosity, K, is the coefficient of diffusion for salt and V' is the basic flow 
velocity. A subscript zero denotes a quantity evaluated in some reference state, 
usually at  the midheight of the stratified fluid. The initial stabilizing density 
gradient is incorporated into the system as (dS'ldz'),. 

To provide a more convenient system to solve, both sides of (3) have been 
operated on by D'. After using the continuity equation, the boundary conditions 
become 

u' = u1 = D'u' = D'S' = 0 at  r = R,, R,. (4) 

All physical variables are rendered dimensionless by normalizing all lengths 
with respect to R, and all velocities with respect to R, Q1. A dimensionless wave- 
number is defined as K = aR,  and non-dimensional time as r = vt/R:. It is noted 
that the product PS' is non-dimensional. The Reynolds numbers of the inner 
and outer cylinders are defined as Re, = R: Q,/v and Re2 = Ri Q2/v; the Froude 
number is defined as 

Fr = Q,/(g/R,)&. (5) 

Substituting the dimensionless variables into (1)-(3), the following system of 
linearized disturbance equations is obtained: 

U U , - h . 2 - - ]  37 a (DD,-h?)u = Re, [ r  2K2-u-Fr-2KD/3l3 ] , ( 6 )  

(7) [DD, - K2- apr] u = Re,uD, V ,  

where the dimensionless variables appear unprimed. The boundary conditions 
become 

(9) u = u = D,u = DX = 0 at  r = 1, q--l. 
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The tangential velocity of the basic flow may be computed from the steady 
solution of the equations of motion, which in non-dimensional form is 

Following Chen & Kirchner (1 97 1 ) equations (6)-( 8) are solved using numerical 

(11) 

o = DS, (12) 

(13) 

(14) 

means. By introducing 

which is essentially the axial derivative of the linearized azimuthal vorticity, 
and letting 

(6)-(8) become 

6 = (DD, - K2) u, 

- = [DD, - K2] 6 -Re, ac 
a7 

av 
a7 - = [DD, - K 2 ]  v - Re,uD* V ,  

with the boundary conditions 

u = v = D,u = 0 = 0 at r = 1 , ~ - 1 .  (16) 

Equations (13)-( 15) prescribe the development in time of 6, v and 0;  equation (1 1) 
defines < in terms of u, and (12) defines 0 in terms of S. The boundary conditions 
on 6 may be obtained from (1  1) by making use of the boundary conditions on u 
given in (1 6) : 6 = a2u/ar2 at r = 1, 7-1. 

The stream function @ may be obtained from the definition 
(17) 

a$#/azi. (18) ur = +-1 

After linearization and assumption of an axisymmetric perturbation 

@'(r', t )  sin az' 

the disturbance stream function becomes 

@ = ur/K. (19) 

The perturbation kinetic energy E per wavelength normalized with respect to 
the constant rpR: Q?/K is defined as follows: 

2.3. Diflerence equations 
Depending on whether the cylinders are rotating in the same direction or in 
opposite directions, the annular region 1 < r < RJR,  is either divided into equal 
grid increments or considered as two subregions separated by the location R, 
where the tangential basic flow velocity is zero, the two subregions 1 6 r < R, 
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and R, < r 6 R2/Rl each being divided into equal grid increments. Physically, 
there is a certain cylindrical surface, at R,, between two counter-rotating 
cylinders which divides the flow. In  the inner subregion 1 < r 6 R, the flow is 
characteristically unstable in that the square of the circulation decreases out- 
wards ; calculations performed across the inner subregion strongly influence 
the solution of the stability problem. Should the grid increments for cylinders 
rotating in the same direction be retained for counter-rotating cylinders, there 
would be only a few grid points in the most critical region. With increasingly 
negative speed ratios, the inner subregion 1 6 r < R, becomes smaller. By 
considering the annular region as two subregions, it is possible to assign grid 
increments to each subregion which give results with counter-rotating cylinders 
of comparable accuracy to results with corotating cylinders. 

The [ equation (11), when written in finite-difference form, results in a tri- 
diagonal matrix, which may be solved by Gaussian elimination (see for example 
Keller 1968, p. 76). The boundary conditions on c are obtained using Du = 0 in 
(17), and the fact that u would be symmetric about the boundary 

6? = 2U?/(Ar)2, <JN = 2UJN-1/(Ar)2, (21) 

where the subscripts j = 1 and j = J N  indicate grid points at  the boundaries 
r = 1 and r = R2/R,. 

The parabolic equations (1 31-1 15) are solved using an explicit finite-difference 
scheme of integration. This scheme has the advantage of requiring knowledge 
of variables at only one previous time step, and does not require an iterative 
procedure. The solution algorithms for 6, v and H reduce to a fairly compact 
form with coefficients with common subscripts which minimize computer stor- 
age. The equations are presented in terms of a general variable Q. The time- 
advanced (n + 1)th value of Q at  the j th  grid point is 

where 
(- 2Re1K ( V y / r j )  ~ y ( A r ) ~  + R e 1 F r 2  KpOF(Ar)2, Q = (, A = 1, 

with aj = 1 +Ar/2rj, crj = 1 -Ar/2rj, 

wj = 2 + (Ar)2 [A?-- l/r?], e.,. = 1 + (Ar/rj)2. 

The value of AT is chosen such that A ~ / ( A Y ) ~  < 0.5 to ensure numerical stability. 
The boundary conditions for the perturbation velocities and salinity are, 

using the same subscript notation as in (22), 

u1 = v1 = D*u, = "') 
= 0 for all n. 

uJN = vjN = D, uJN = Oj,\l 

F L M  66 
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2.3, Calculation procedure 
The calculation procedure is initiated by setting all variables equal to zero, 
followed by assigning small random values of 6 a t  the interior grid points 
1 < r < J N .  Random values of 6 are generated by the subroutine RANDU of 
the IBM system/360 scientific subroutine package with values between 0 and 1 ; 
these numbers are multiplied by lo-* to ensure that the initial disturbances are 
small. The boundary values of 6 are not known a priori, since they depend on 
the second derivative of u. By solving (11) for ZL, the boundary values of 6 are 
obtained from (17). The time-advanced 6, u and 0 values are then computed 
using (13)-(15). The perturbation kinetic energy is calculated according to (20) 
using Simpson’s rule, and the stream function is computed from (1 9). This cal- 
culation procedure is repeated for subsequent time steps using the computed 
boundary values of [. 

The perturbation kinetic energy E is normalized with respect to its initial 
value computed at r = 0, and is used to monitor the behaviour of the disturbances. 
The growth or decay of E determines whether the flow is unstable or stable. The 
oscillatory nature of E will be discussed in the following section, but pertinent here 
is the fact that this oscillatory behaviour limits the number of time steps which 
may be computed between printouts for meaningful interpretation of the results. 
Printing results at  each time step avoids this situation, but results in voluminous 
output. In order to follow the trend of the oscillations, results are usually printed 
at  intervals corresponding to approximately 10 yo of the oscillation period. The 
oscillation periods and number of calculation time steps per period vary with the 
speed ratio, wavenumber and Reynolds number; hence, printout times must be 
adjusted for each case. 

3. Results and discussion 
The results of stability calculations are presented for cylinders having a radius 

ratio 7 of 0.2 and for stable density gradients $o of - 0.001 1 and - 0.0021. These 
density gradients approximate conditions used in the physical experiments 
reported in I, and are defined as 

(24) 

The corresponding buoyancy frequencies are 0.904 and 1.267 s-l. In  the calcula- 
tions the ratio V / K ,  was set to be 700. Calculated results are presented in table 1. 
Sixteen cases are listed, each representing only the final results of a series of 
trials to determine the critical conditions for a given density gradient and speed 
ratio. Generally, 10 trials were necessary to obtain the critical Reynolds number 
Re, of the inner cylinder. The first three cases are for the smaller density gradient 
of - 0.0011, with the remaining cases for the larger gradient of - 0.0021. For 
comparison of predicted stability conditions with the physical experiments 
previously referred to, a range of speed ratios from - 1.00 to 0.02 was considered 
at  $o = - 0.0021. Perturbations were introduced into the tangential basic flow 
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Reynolds number 
of inner Froud number 

Case Speed ratio, p Wavenumber, K cylinder, Re, F r  

Q0 = - 0.001 1 ,  Y = 0.00988 cm2 s-1 
1 0 12-85? 196.2 0.02 13 
2 0 16.00 186.7 0.0203 
3 0 18.00 196.2 0.0213 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0-02 
0.02 
0.02 
0.0 
0.9 
0 
0 

- 0.02 
- 0.02 
- 0.02 
- 0.10 
- 0.50 
- 1.00 

do = - 0.0021, Y = 0-01033 cm2s-1 
14.00t 314.6 
16.00 295.7 
18.00 294.0 
14.00 236.9 

18.00 221.5 
20.00 231.5 
16.00 195.0 
18-00 193.4 
20-00 201.0 
16.817 181.3 
24-55? 163-8 
28.35t 231.5 

16-00t 222.5 

t Experimentally determined preferred wavenumbor. 

TABLE 1. Calculated results, 7 = 0.2 

0.0358 
0.0337 
0.0335 
0.0270 
0.0254 
0.0253 
0.0264 
0.0222 
0.0220 
0.0229 
0.0206 
0.0186 
0.0263 

at T = 0, and stability conditions determined by monitoring the development of 
the perturbation kinetic energy E in time. During these calculations the gap 
width d ( = R, - R,) was used as the basic length parameter. However, the results 
were converted and are presented with R, as the basic length. 

This method of analysis was first used to solve the homogeneous Couette flow 
stability problem with a wide gap and negative speed ratios. From these results 
guidelines were obtained as to the number J of grid increments required across 
the gap, and an estimate was made of the accuracy of the calculations. The 
results of the analysis for the homogeneous case at Re, = 114.0, K = 3-06, 
p = -0.5 and 7 = 0.5 are shown in figure 1. The two curves for J = 40 and 80 
show the variation of the perturbation kinetic energy E with non-dimensional 
time T, where J is the number of equal-sized grid increments across the gap 
and E is normalized with respect to its value at  r = 0. The critical Re ,  is taken to 
be that at  which E neither grows nor decays as T -+ co. Both curves initially show 
a decrease in E ,  followed by a sharp rise and a subsequent decline. At approxi- 
mately T = 0-065 both curves begin to rise, but the curve for J = 80 levels off at  
E = 1 for r > 0.09. The levelling off of the curve indicates that the critical con- 
ditions are satisfied for the case J = 80, while the increasing E curve a t  J = 40 
indicates that Re ,  = 114-0 is supercritical. Sparrow et al. (1964) determined the 
critical Reynolds number at the same value of K as 114.75, which is approxi- 
mately a 0.7% difference from the present calculation. On the basis of these 
considerations, preliminary calculations were made for the stratified case using 
J = 40 and 80. 

11-2 
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FIGURE I. Effect of J = 40 and 80 grid increments on the perturbation kinetic energy for 
homogeneous fluid at Re, = 114.0, K = 3.06, p = - 0.5 and 7 = 0.5. 

Preliminary calculations made for the stratified case showed that the E 
curve was of an oscillatory nature and did not become monotonic after a finite 
time T as did the previously described homogeneous E curve. Initial attempts to  
break down the annular gap into equal increments with J = 40 and 80 indicated 
that for counter-rotating cylinders there was not a sufficient number of grid points 
in the most critical region of the gap, R, < r 6 R,. Such calculations showed 
general agreement with experimental results of I for p >/ 0, but predicted un- 
reasonably high values of the critical Reynolds number for ,u < 0. Using the 
divided grid scheme previously described for counter-rotating cylinders, the 
number of grid points was increased in the region R, < r < R, and trial calcula- 
tions were made with J = 40,80 and 160. The remainder of the gap, R, 6 r 6 R,, 
was assigned J = 40. Figure 2 shows the results of calculations made at 

Re, = 171.5, K = 16.0, p = -0.1, = 0.2 and 4, = -0.0021. 

For J = 40 the perturbation kinetic energy curve is seen to oscillate with an 
increasing trend, while the curves for J = 80 and 160 show decreasing trends 
or stable conditions with relatively good agreement in the amplitudes up to 
T = 0.015. It is noted that in subsequent determinations of critical conditions 
it was usually sufficient to carry out the integration to 7 N 0.02. 
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FIGURE 2. Effect of J = 40, 80 and 160 grid increments on the perturbation kinetic 
energy at Re, = 171.5, h' = 16.00, ,LL = -0.1, y = 0.2 and $o = -0.0021. 
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FIGURE 3. Determination of critical Reynolds number for K = 24.55, 
,u = -0-5, 7 = 0.2 and $o = -0.0021. 
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FIGURE 4. Perturbation kinetic energy at critical Reynolds numbers for ,U = -0.1, 
Re 1 -  - 181.3, K = 16.81; y = 0, Re, = 222.5, K = 16.00; and y = 0.02, Re, = 314.6, 
A’ = 14.00. Calculations made at 7 = 0.2 and $,, = -0.0021. 

On the basis of the experience gained from trial calculations made for both the 
homogeneous and stratified cases, for positive speed ratios the entire gap 
R, < r 6 R, was divided into J = 160 equal grid increments, and for p < 0 
the gap region R, < r < R, was divided into 160 increments. Thus it is expected 
that the accuracy for the computations made in the regions where instability is 
most likely to occur is approximately the same for all speed ratios. 

Figure 3 illustrates the procedure for determining the critical Reynolds number 
a t  K = 24.55, ,u = - 0.5, 7 = 0.3 and $o = - 0.0021. The experimental results of 
I are used as a guide for selecting trial values of the critical Reynolds number. 
By performing calculations over a range of values of Re,, the critical value is 
bracketed as shown by the four curves. Re, = 182.0 exceeds the critical value as is 
indicated by the increasing trend of the maximum points on the oscillating E 
curve. The lowest curve, for Re, = 159.1, is below that for the critical Reynolds 
number by only approximately 3 %, but exhibits a relatively strong decreasing 
trend. The trend of the kinetic energy is established after the second maximum 
point of the curve; at the critical value of Re, the maximum points may oscillate 
by approximately 0.5 yo. Therefore, it is always necessary to compute at  least 
three maximum points to establish a trend. The criterion for selection of the 
critical Re, is to take the Re, corresponding to the curve for which the maximum 
values of the perturbation kinetic energy neither grow nor decay as T increases. 

Perturbation kinetic energy curves at  critical conditions for p = 0.03, 0 and 
-0.1 with q50 = -0.0031 are shown in figure 4. These three cases compare the 
typical behaviour of the E curves for positive, zero and negative speed ratios. 
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FIGURE 5. Perturbation kinetic energy corresponding to cases shown in streamline plots. 
(i) Re, = 326.0, R = 14-00, y = 0.02. (ii) Re, = 235.0, K = 15.70, y = 0. (iii) Re, = 193.2, 
K = 16-81, y = -0.1. Calculations made at 7 = 0.2 and q50 = -0.0021. 

The highest level of perturbation kinetic energy is attained for ,u = - 0.1. The 
level of E for the case p = 0.02 is lower than that for p = - 0.1, but is above 
the level of E attained in the case p = 0. In the cases where the outer cylinder is 
rotating there is more energy available in the basic flow to feed the perturbations, 
and this is revealed by the correspondingly higher E levels. The oscillation period 
AT, of the perturbation kinetic energy is seen to vary with p. The lowest oscilla- 
tion period for the cases under consideration is ArP = 0.005 for p = - 0.1 ; the 
period is greater for p = 0, being AT, = 0.007, and is reduced to AT, = 0.006 a t  
,u = 0.02. The corresponding frequencies are 7.25, 5.17, and 6.04s-l, which are 
about five times the buoyancy frequency. These oscillations are the result of 
periodic splitting and recombining of the azimuthal vortices as revealed by 
streamline plotting discussed below. 

The calculated flow field is described by streamline plots at  selected times, 
which are indicated as dots along the perturbation kinetic energy curves in 
figure 5. Three cases are shown in the streamline plots of figures 6, 7 and 8, which 
represent the cases of positive, zero and negative speed ratios respectively. The 
Reynolds number Re, is approximately 10 yo above the critical value for each 
of the three speed ratios, p = 0.02,O and - 0.1. The plots were obtained from the 
same plotter routine as was used by Liu & Chen (1973). 

Figure 5 is a plot of the initial segments of the perturbation kinetic energy 
curves for the cases presented in the streamline plots. The dots on each curve 
correspond to the times for which streamline plots are shown. In  each streamline 
plot the left and right vertical boundaries represent the surfaces of the inner and 
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FIGURE 6. Streamline plots with cylinders rotating in the same direction at  Re, = 326.0, 
K = 14.00, p = 0.02, 71 = 0.2 and $,, = -0.0021. Dimensionless times: (a) 0.781 x 
( b )  0.765 x (9) (c) 0.154 x lo-', (d) 0-232 x lo-', ( e )  0.310 x (f) 0.467 x 
0.623 x lo-', (h)  0.779 x lo-', (i) 0.935 x lo-'. 

outer cylinders, respectively. The horizontal lines at the top and bottom are 
fictitious periodic boundaries at an axial distance of two wavelengths. The use 
of two wavelengths was selected by Liu & Chen (1973) to generate symmetrical 
cells during a numerical wavenumber search, and is retained here primarily for 
convenience. The grid marks shown divide each wavelength and the annular 
gap width into 20 increments. Plots for ,u < 0 show a vertical line through the 
location R, where the basic flow velocity vanishes. 

Figure 6 illustrates the development of the perturbation streamlines at 
selected time intervals for the case Re, = 326, K = 14.00, p = 0 . 0 2 , ~  = 0.2 and 
q5, = - 0.0021. The first plot (figure 6 a )  shows the perturbation streamlines after 
five calculation cycles from r = 0. It shows that the initial random disturbances 
are quickly organized into vortex motion. The development of a secondary 
vortex system near the wall of the outer cylinder is shown in the next three plots. 
The secondary cells appear to be growing at  the expense of the larger inner cells. 
In  figure 6 ( e ) ,  the smaller vortex system becomes the larger, which occurs in 
this case just after E has its first minimum point. The initially larger cells are 
no longer present in figure 6(f) .  The next picture (figure 6 g )  shows the initially 
smaller vortices growing to approximately their largest size, which occurs im- 



Stability of rota,tional Couette flow of stratiJied f luids 169 

(4 (f) 
FIGURE 7. Streamline plots with rotating inner cylinder and stationary outer cylinder at 
Re, = 235.0, K = 15.70, p = 0, 7 = 0.2 and #,, = -0.0021. Dimensionless times: (a) 0.765 
x ( b )  0.154 x (c) 0.232 x (d) 0.310 x ( e )  0.389 x (f) 0.701 x 

mediately after E passes through its first maximum point a t  the completion of 
its first oscillation. The last two pictures (figures 6 h, i) show that a secondary 
vortex develops again near the wall of the outer cylinder in a similar manner t o  
the system previously developed during the first half of the initial cycle. The 
final plot (figure 6 i )  corresponds to a time just after E passes through its second 
minimum point. For this particular set of streamline plots there is a general 
correlation between the minimum energy point and the two-vortex system, 
and between the maximum energy point and the fully developed one-vortex 
system. This correlation holds for ,u 2 0 cases but not for ,u < 0 cases. 
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(4 (f) 
FIGURE 8. Streamline plots with counter-rotating cylinders at Re, = 193.2, K = 16.81, 
p, = - 0 . 1 , ~  = 0.2 and $,, = -0.0021. Dimensionless times: (a) 0.149 x 
(c) 0.466 x 

(b) 0.307 x 
( d )  0.784 x ( e )  0.126 x lo-', (f) 0.173 x lo-'. 

Streamline plots for p = 0 are shown in figure 7 for Re, = 335, K = 15.70, 
11 = 0.3 and cjh0 = - 0.0021. The wavelength of the disturbances for this case is 
approximately 5 %  smaller than for the case at p = 0-02 as indicated by the 
reduction in height of the vertical walls. I n  figure 7 ( a )  the streamlines are 
depicted after 50 calculation cycles and are seen to be similar to the previous 
case. The origin of a secondary vortex system near the outer wall is seen in figure 
7 (b). The secondary cells grow to approximately the size of the initially larger 
cells in figure 7 (d), and finally engulf the initial cells in figure 7 ( e ) .  The times 
corresponding to figures 7(d) and (e) bracket the minimum energy point. In 
figure 7 ( f )  the streamlines are for a time near the first maximum of the energy 
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curve. For this set of streamline plots, the general conditions found for case 
p = 0.02 hold. 

The development of the perturbation stream function for Re, = 193.2, 
I< = 16-81, p = - 0 . 1 , ~  = 0.2 and q50 = - 0.0021 is shown in figure 8. A reduction 
in wavelength of 15% from that in the case p = 0.02 is shown by the smaller 
vertical walls. The vertical line near the centre of each picture indicates the loca- 
tion of R,, which is a t  0.45d for p = -0.1. Shown in the first picture (figure 
8a) are the streamlines after 50 calculation cycles. The non-dimensional time 
reached after 50 calculation cycles for p = - 0.1 is approximately one fifth of the 
time reached after the same number of cycles a t  p = 0 owing to the smaller grid 
spacing. These cells become progressively weaker and in figure 8(d) the value 
of E has reached its minimum. The subsequent formation of a secondary system 
near the outer wall is shown in figure 8 (e ) .  It is interesting to note that there are 
three vortex systems in figure 8 ( e ) ,  which develop into the two-vortex system 
as shown in figure 8(f). The energy curve is a t  its first maximum value a t  this 
time. 

It appears that for p 2 0 the maximum perturbation kinetic energy occurs 
when the perturbation flow field consists of one large vortex. For counter-rotat- 
ing flow (p < 0), however, the maximum perturbation kinetic energy occurs 
when there are two opposing vortices. This difference may be attributed to the 
difference in the flow fields of these two cases. When p 2 0, the tangential velo- 
city within the annulus is of one sign. It is reasonable to expect that a large 
vortex spanning the entire gap would be more vigorous than two opposing 
vortices. When p < 0, the tangential velocity changes sign somewhere within 
the annulus. Now it is reasonable to expect that two counter-rotating vortices 
would be more vigorous than one large vortex. It is also interesting to note that, 
in the streamline plots for p < 0, the vortex system near the inner wall extends 
beyond R,, which is in agreement with the experimental observations of I .  

The theoretical cell patterns shown in the streamline plots are based on the 
assumptions that the disturbances are axisymmetric and periodic in z. As a 
result, symmetrical Taylor-type cells are generated within an axial distance of 
one wavelength; they develop into a two-vortex system, and after a time interval, 
return to the simple Taylor cells. The experimentally determined wave form 
described in I shows two small cells developing adjacent to the inner cylinder 
between two larger cells. These smaller cells develop into larger cells until the 
smaller become the larger and vice versa, and with increasing time the roles of 
the cells are reversed and the cell pattern returns to its initial configuration. The 
theoretical development of axisymmetric cells shows a qualitative agreement 
with the experimental observations in that there is a periodic transformation from 
development of the one-vortex to the two-vortex system although the periods of 
the calculated and experimental wave forms are quite different. The effect of non- 
axisymmetric disturbances on stability has been investigated for the homo- 
geneous case theoretically by Krueger et al. (1966) and experimentally by Snyder 
(1968). Both papers reported that the variation in critical conditions for non- 
axisymmetric disturbances relative to those for axisymmetric disturbances is 
small. Snyder (1  968), for example, indicated that for 7 = 0-5 the differences in the 
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FIGURE 9. Theoretical stability curves at  7 = 0.2. - x -, calculation with experimental 
wavelengths from I a t  $o = -0.0021; ---, calculation with theoretical wavelengths at  
$o = -0.0021; 0,  critical condition at  $o = -0.0011 calculated with experimental wave- 
length. 
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Re, 
FIGURE 10. Theoretical wavenumber selection for ,u = - 0.02, 0 and 0.02 for 

7 = 0.2 and $o = -0.0021. 

solutions are only slightly larger than the scatter in experimental data. It is sug- 
gested that a similar mechanism of wave-form influence is present in the stratified 
case, and the computations made withthe assumption of axisymmetric wave forms 
are sufficiently accurate for comparison with the experimental data reported in I. 

A stability curve was determined for the case 7 = 0.2, #o = - 0.0021 over a 
range of speed ratios from - 1.0 t o  0.02 using wavelengths from the experimental 
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FIGURE 11. Comparison of theoretical and experimental stability curves a t  7 = 0.2. - x -, 
calculation with experimental wavelengths from I at q50 = - 0-0021; --IJ--, experimental 
results from I with q5,, = - 0.0020. 

data of I. Experimental wavenumbers are indicated with an asterisk in table I. 
The stability curve is shown in figure 9, where calculated points are indicated by 
the crosses on the curve. A minimum point is exhibited by the stability curve at  
approximately Re, = - 2050. To determine the influence of the density gradient 
on stability, a case computed with the smaller gradient of - 0.0011 is shown a t  
R e ,  = 0. The critical value of Re ,  is approximately 15% less for the smaller 
density gradient than for the larger density gradient. 

The dashed line shows a segment of a stability curve determined with theoretic- 
ally predicted critical wavenumbers. Theoretical critical wavenumbers and 
critical Reynolds numbers are obtained from wavenumber ws. Reynolds number 
Re ,  plots as shown in figure 10. Three curves were determined for p = 0.02, 
0 and - 0.02 by choosing a range of wavenumbers to bracket the critical value 
occurring at the minimum value of Re,. A 7 % increase in the critical value of Re,  
was obtained a t  ,u = 0.02 when the experimental value K = 16.5. No systematic 
search was conducted at all the speed ratios considered for a theoretical critical 
wavenumber owing to the large computing time required. 

In  figure 1 1 )  the theoretically calculated stability curve is compared with the 
experimental data from I .  In  general, the agreement is quite good for negative 
speed ratios. For speed ratios near and greater than zero, the theoretical curve 
gives critical values of Re ,  much higher than the experimental values. It is to be 
noted that the experimental values of the critical Reynolds number for ,u > 0 
could have been influenced by end effects. 
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4. Conclusions 
In  this paper we have presented an analysis of the stability of rotational 

Couette flow of a stably stratified fluid. A system of time-dependent linearized 
partial differential equations is solved using explicit finite-difference approxima- 
tions. Small random perturbations are initially introduced into the flow field, 
and the state of the flow is examined after finite increments in time. The growth 
or decay in the mean of the perturbation kinetic energy is used to determine 
whether the flow is unstable or stable. 

Results indicate that the method is applicable to Couette flow stability prob- 
lems for both homogeneous and stratified fluids. The case of a large gap between 
counter-rotating cylinders with a large negative speed ratio does not present 
computational difficulties. Calculations for the homogeneous case are within 
better than 1 % agreement with the results of Sparrow et al. (1964) at a radius 
ratio of 0.5 and negative speed ratios as large as - 0.5. The method is used to 
examine the stability of stably stratified Couette flows with a radius ratio of 
0-2 and negative speed ratios as large as - 1.0. The theoretical neutral-stability 
curve best agrees with the experimental results of I for negative speed ratios 
greater than approximately - 0.5. Calculations confirm the stabilizing influence 
of an increase in density gradient. Theoretically determined critical wavenumbers 
do not agree in all cases with the experimentally determined values. The critical 
Reynolds numbers obtained from the calculations using the theoretical wave- 
numbers, however, are quite reasonable. 

The streamline plots show that the assumption of axisymmetric disturbances 
results in a cell pattern not in complete physical agreement with the cell pattern 
determined from the experimental observations of I .  A calculated cell first 
appears singly within an axial distance of one wavelength. Then the cell develops 
into two adjacent counter-rotating cells with one cell close to the inner cylinder 
wall and the other cell near the outer cylinder wall. Subsequently, the two 
cells become one. This pattern repeats in time; apparently, it is the cause of the 
oscillations in the perturbation kinetic energy. 

The National Science Foundation is gratefully acknowledged for financial 
support under Grant GK-14275. 

R E F E R E N C E S  

CHEN, C. F. & KIRCHNER, R. P. 1971 Stability of time-dependent rotational Couette 
flow. Part. 2. Stability analysis. J .  Fluid Mech. 48, 365. 

HARRIS, D. L. & REID, W. D. 1964 On the stability of viscous flow between rotating 
cylinders. Part 2. Numerical analysis. J .  Fluid Mech. 20, 95. 

KELLER, H. B. 1968 Numerical Methods for Two-point Boundary- T’aZue Problems. Wal- 
thain, Massachusetts : Blaisdell. 

KRUEGER, E. R., GROSS, A. & DIPRIMA, R. C. 1966 On the relative importance of 
Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. 
J .  Fluid Mech. 24, 521. 

1973 Numerical experiments on time-dependent rotational 
Couette flow. J .  Fluid illech. 59, 77. 

LIU, D. C. & CHEN, C. F. 



Xtability of rotational Couette $ow of stratiJied JEuids 175 

SNYDER, H. A. 1968 Stability of rotating Couette flow. 11. Comparison with numerical 
results. Phys.  fluid.^, 11, 1599. 

SPARROW, E. M., MUNRO, W. D. & JONSSON, V. I(. 1964 Instability of the flow between 
rotating cylinders: the wide-gap problem. J .  Fluid Mech. 20, 35. 

WALOWIT, J., TSAO, S. & DIPRIMA, R. C. 1964 Stability of flow between arbitrarily 
spaced concentric cylindrical surfaces including the effect of a radial temperature 
gradient. J .  Appl. Mech. 31, 585. 

WITHJACK, E. M. & CHEN, C. F. 1974 An experimental study of Couette instability of 
stratified fluids. J. Fluid Mech. 66.  725. 


